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Abstract. A purely analytic proof is given for an inequality that has
as a direct consequence the two most important affine isoperimetric
inequalities of plane convex geometry: The Blaschke-Santaló inequality
and the affine isoperimetric inequality of affine differential geometry.

1. Introduction.

In [3], Harrell showed how an analytic approach could be used to obtain a
well-known Euclidean inequality of plane convex geometry – the Blaschke-
Lebesgue inequality. In this article we show how a purely analytic approach
can be used to establish the best known affine inequalities of plane convex
geometry. To be precise, we will use a purely analytic approach to estab-
lish an analytic inequality that has as an immediately consequence both
the affine isoperimetric inequality of affine differential geometry and the
Blaschke-Santaló inequality. What’s more significant, we are able to remove
the “convexity” assumption and thus establish an inequality with applica-
tions to the planar Lp Minkowski problem (see, e.g., [9], [10], [15], [16], [17])
with not necessarily positive data.

Let C ⊂ R2 be a compact convex set. Let S be the unit circle parame-
terized by

e(θ) := (cos θ, sin θ).

Then h = hC : S → R defined by

h(θ) := max
x∈C

e(θ) · x

is the support function of C.
The affine isoperimetric inequality of affine differential geometry states

that if a plane convex figure has support function h ∈ C2(S), then

(1.1)
4π2

∫
S

h(h + h′′) dθ ≥
( ∫

S
(h + h′′)2/3 dθ

)3

with equality if and only if the figure is an ellipse.
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The integral on the left is twice the area of the figure, while the integral on
the right is the so called affine perimeter of the figure.

The Blaschke-Santaló inequality states that if a convex figure is positioned
so that its support function h is positive and

(1.2)
∫
S

sin θ

h(θ)3
dθ = 0 =

∫
S

cos θ

h(θ)3
dθ,

then

(1.3)
4π2

( ∫
S

h−2dθ

)−1

≥
∫
S

h(h + h′′) dθ,

with equality if and only if the figure is an ellipse.

The integral on the left is twice the area of the polar reciprocal of the figure.
In [7], it was shown that both inequalities (1.1) and (1.3) are encoded

in the following inequality: If K and L are convex figures whose support
functions are such that hL ∈ C2(S) and hK arbitrary then
(1.4)

4π2

( ∫
S
(hL + h′′

L)hK dθ

)2

≥
( ∫

S
(hL + h′′

L)2/3dθ

)3 ∫
S
[h2

K − (h′
K)2] dθ

with equality if and only if K and L are homothetic ellipsoids.

Using this version of the inequality, we see that choosing L = K in (1.4)
immediately gives (1.1). To see how (1.4) gives (1.3) choose the figure L so
that hL satisfies the equation h′′

L + hL = h−3
K .

In [7], it was shown that (1.4) is a consequence of (1.1) and the mixed area
inequality. The aim of this paper is to establish an analytic inequality that
extends inequality (1.4). Our proof of this new analytic inequality uses none
of the tools of convex geometry. We are thus able to remove the “convexity”
assumption, h′′ + h ≥ 0, from all the inequalities above.

2. The main inequality.

Let H1(S) be the Hilbert space of functions u : S → R with the norm

‖u‖H1 =
(∫

S
[u2 + (u′)2] dθ

) 1
2

.

Theorem 1 (Two Dimensional Analytic Affine Isoperimetric Inequality).
Assume

i) F and h are non-negative 2π periodic functions that do not vanish
identically.

ii) F is integrable on S and satisfies the orthogonality conditions

(2.1)
∫
S

F (θ) cos θ dθ = 0 =
∫
S

F (θ) sin θ dθ.

iii) h ∈ H1(S).
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Then

(2.2)
(∫

S
F (θ)h(θ) dθ

)2

≥ 1
4π2

(∫
S

F 2/3 dθ

)3 (∫
S
[h2 − (h′)2] dθ

)
.

Equality holds if and only if there exist k1, k2, a > 0, and α ∈ R such that

(2.3) h(θ) = k1

√
a2 cos2(θ − α) + a−2 sin2(θ − α)

and F is given almost everywhere by

(2.4) F (θ) = k2(a2 cos2(θ − α) + a−2 sin2(θ − α))−3/2.

Remark 2.1. The functions h(θ) of the form (2.3) are exactly support func-
tions of the ellipses centered at the origin.

The main ingredient in the proof of Theorem 1 is a family of transforms,
that leave a few key integrals invariant and which let us construct maximiz-
ing sequences. We will introduce the transforms and study their properties
in Section 5. In Section 6, we prove the inequality. In Sections 3 we study
some regularity results for support functions of planar convex sets. These
regularity results are used in Section 4 to derive the affine isoperimetric
inequality for general planar sets.

3. Function spaces associated with the inequality.

Because of the integral
∫
S[h2 − (h′)2] dθ that appears in Theorem 1, the

natural function space for the functions h in the theorem is H1(S). Moreover
in the geometric applications Theorem 1 a natural choice for the function h
is to be a support function of a bounded convex set and H1(S) contains all
the support functions. The following characterizes the support functions of
bounded convex sets.

Proposition 3.1. A continuous function h : S → R is the support function
of a bounded convex set if and only if the second distributional derivative h′′
satisfies (h′′ + h) ≥ 0 as a distribution.

The proof of this proposition is elementary, and is left to the reader.
We now describe the smallest function space that contains the support

functions of convex sets. Let D be the set of 2π periodic functions u such
that the distributional derivative u′′ is a signed measure. The total variation
‖µ‖TV of a signed measure µ on S is its norm as a linear functional on C(S).
That is

‖µ‖TV := sup
{∫

S
φ(θ) dµ(θ) : φ ∈ C(S), |φ(θ)| ≤ 1

}
.

The standard norm on D is ‖h‖L∞ +‖h′′‖TV , but, for geometric reasons, we
use the equivalent norm

‖h‖D := ‖h‖L∞ + ‖h′′ + h‖TV .
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The space D can also be defined as the functions h on S that are absolutely
continuous and such that the first derivative h′ is of bounded variation. As
functions of bounded variation are bounded this implies all elements of D
are Lipschitz. Therefore the imbedding D ⊂ Cα(S) is compact for α ∈ [0, 1),
where Cα(S) is the space of Hölder continuous functions

Theorem 3.2. The space D(S) contains all the support functions of bounded
convex sets. Moreover every element of D(S) is a difference of two sup-
port functions. Thus D(S) is the smallest function space containing all
the support functions. More precisely if f ∈ D there are support functions
h1, h2 ∈ D with f = h1 − h2 and

(3.1) ‖h′′
1 + h1‖TV , ‖h′′

2 + h2‖TV ≤ 3‖f ′′ + f‖TV .

Proof. We have already seen that D contains all the support functions of
bounded convex sets. Let f ∈ D(S). Then f ′′ + f is a signed measure.
We now claim that we can write f ′′ + f = µ+ − µ− where µ+ and µ− are
non-negative measures with the extra conditions that

(3.2)
∫
S

cos θ dµ+ =
∫
S

cos θ dµ− =
∫
S

sin θ dµ+ =
∫
S

sin θ dµ− = 0

and

(3.3) ‖µ+‖TV , ‖µ−‖TV ≤ 3‖f ′′ + f‖TV .

To start let f ′′ + f = ν+ − ν− be the Jordan decomposition (cf. [12, p. 274])
of f ′′ + f . Then ν+ and ν− are non-negative measures and ‖f ′′ + f‖TV =
‖ν+‖TV +‖ν−‖TV . From the definition of the second distributional derivative
(which is formally just integration by parts)∫

S
(f ′′ + f) cos θ dθ = −

∫
S

f cos θ dθ +
∫
S

f cos θ dθ = 0

and likewise
∫
S(f ′′ + f) sin θ dθ = 0. Using this in f ′′ + f = ν+ − ν− gives∫

S
cos θ dν+ =

∫
S

cos θ dν−,

∫
S

sin θ dν+ =
∫
S

sin θ dν−.

Set

a :=
1
π

∫
S

cos θ dν+ =
1
π

∫
S

cos θ dν−,

b :=
1
π

∫
S

sin θ dν+ =
1
π

∫
S

sin θ dν−.

Let C > 0, to be chosen shortly, and set

µ+ = ν+ + (C − a cos θ − b sin θ) dθ

µ− = ν− + (C − a cos θ − b sin θ) dθ.

There is an α so that a cos θ + b sin θ =
√

a2 + b2 cos(θ + α). Thus if
C :=

√
a2 + b2 the measures µ+ and µ− are non-negative. Using that in
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L2 the function cos θ is orthogonal to sin θ and to the constants and that∫
S cos2 θ dθ = π∫

S
cos θ dµ+ =

∫
S

cos θ dν+ +
∫
S

cos θ(C − a cos θ − b sin θ) dθ

=
∫
S

cos θ dν+ − a

∫
S

cos2 θ dθ = 0

and likewise all the other conditions of (3.2) hold. As ‖f ′′ + f‖TV =
‖ν+‖TV + ‖ν−‖TV we have min{‖ν+‖TV , ‖ν−‖TV } ≤ 1

2‖f ′′ + f‖TV . The
formulas for a imply

|a| ≤ min
{

1
π

∫
S
| cos θ| dν+(θ),

1
π

∫
S
| cos θ| dν−(θ)

}

≤ 1
π

min
{‖ν+‖TV , ‖ν−‖TV

} ≤ 1
2π

‖f ′′ + f‖TV .

Likewise |b| ≤ (2π)−1‖f ′′ + f‖TV . Using this in the definition of C gives
C ≤ √

2(2π)−1‖f ′′ + f‖TV . As µ+ and µ− are non-negative measures their
total variation is just their total mass. Thus

‖µ±‖TV =
∫
S

1 dµ± =
∫
S

1 ν± +
∫
S
(C − a cos θ − b sin θ) dθ

= ‖ν±‖ + 2πC ≤ (1 +
√

2)‖f ′′ + f‖TV

≤ 3‖f ′′ + f‖TV

This shows that (3.3) holds.
We claim that there is a function h+ so that h′′

+ + h+ = µ+. To see this
expand µ+ in a Fourier series and use the equations (3.2) to see that the
coefficients of sin and cos vanish.

µ+ =
a0

2
+

∞∑
k=2

(ak cos(kθ) + bk sin(kθ)).

Then h+ is given explicitly by

h+(θ) =
a0

2
+

∞∑
k=2

ak cos(kθ) + bk sin(kθ)
1 − k2

.

The formulas ak = π−1
∫
S cos(kθ) dµ+(θ), bk = π−1

∫
S sin(kθ) dµ+(θ) imply

that |ak|, |bk| ≤ 1
2‖µ+‖TV . Therefore the series defining h+ converges uni-

formly and thus h+ is continuous. Likewise there is a continuous function
h− with h′′− + h− = µ−. As µ+ and µ− are non-negative measures and
formal differentiation of Fourier series corresponds to taking distributional
derivatives, both h+ and h− are support functions.

Let y = f − (h+−h−). Then y′′+y = 0. This implies y = α cos θ+β sin θ
for some constants α and β. Thus f = (h+ + α cos θ + β sin θ) − h−. But
α cos θ+β sin θ is the support function of the point (α, β). So (h++α cos θ+
β sin θ) is a support function, and f is a difference of support functions as
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required. Letting h1 = h+ + α cos θ + β sin θ and h2 = h− then f = h1 − h2

and for i = 1, 2 and by (3.3) ‖h′′
i + hi‖TV = ‖µ±‖ ≤ 3‖f ′′ + f‖TV . ¤

4. The affine isoperimetric inequality for arbitrary planar
convex sets.

If h is a support function, then h is Lipschitz and therefore absolutely
continuous. Therefore the distributional derivative h′ of h is just the clas-
sical derivative which exists almost everywhere. As h is a support function
then by Proposition 3.1 the second distributional derivative h′′ is a measure
and therefore h′ is of bounded variation. By a theorem of Lebesgue, the
function h′ will be differentiable (in the classical sense) almost everywhere.
Denote this derivative of h′ by Dh′ to distinguish it from the distributional
derivative. In what follows we will denote classical derivatives of a function
f by Df . As the first distributional derivative of h agrees with the classical
derivative we have Dh′ = D2h so that Dh′ is the second classical derivative.

Recall that, by a theorem of Alexandrov, a convex function on an n
dimensional space, and thus a support function, has a generalized second
derivative, called the Alexandrov second derivative, almost everywhere and
in the one dimensional case the Alexandrov second derivative is just D2h.

Various authors [6, 14, 8, 18] have extended the definition of affine ar-
clength (and more generally higher dimensional affine surface area) from
convex sets with C2 boundary to general convex sets. It was eventually that
shown all these definitions are equivalent see i.e. [1] and, for two dimensional
convex sets, are given in terms of the support function by∫

S
(D2h + h)2/3 dθ.

The following is the general form of the affine isoperimetric inequality in the
plane.

Theorem 4.1. Let K be an compact convex body in the plane with area A
and affine perimeter Ω. Then

(4.1) Ω ≤ 8π2A

with equality if and only if K is an ellipse.

The proof of this Theorem is based on our Theorem 1 and the follow-
ing result which compares the distributional and classical derivatives of a
support function.

Proposition 4.2. Let h : S → R be the support function of a bounded convex
set. Then the distribution h′′ + h is of the form

(4.2) h′′ + h = (D2h + h) dθ + dµ

where dθ is Lebesgue measure, the function D2h + h is in L1(S) and µ is a
non-negative measure that is singular with respect to Lebesgue measure (i.e.
there is a set N of Lebesgue measure zero with µ(S \ N) = 0).
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The proof of the Proposition is elementary and is left to the reader.

Proof of Theorem 4.1. Let ho be the support function of a planar convex
body K. In the proof of Lemma 6.3 we will see that it is possible to choose
ao and bo so that h(θ) := ho(θ) + ao cos θ + bo sin θ is positive on S and

(4.3)
∫
S

cos θ

h3(θ)
dθ =

∫
S

sin θ

h3(θ)
dθ = 0.

Using the relation between D2h + h and h′′ + h given by Proposition 4.2 we
have ∫

S
h(D2h + h) dθ ≤

∫
S

h(h′′ + h) dθ.

This observation, preceded by Hölder’s inequality, gives,

(4.4)
(∫

S
(D2h + h)2/3 dθ

)3

≤
(∫

S

dθ

h2

) (∫
S

h(h′′ + h) dθ

)2

.

In Theorem 1 take F = h−3. Then (4.3) shows that conditions (2.1) are
satisfied. Therefore(∫

S

dθ

h2

)3 (∫
S

h(h′′ + h) dθ

)
=

(∫
S

dθ

h2

)3 (∫
S
[h2 − (h′)2] dθ

)

≤ 4π2

(∫
S

dθ

h2

)2

.(4.5)

Combining (4.4) and (4.5) and using the fact that D2h+h = D2ho +ho and∫
S h(h′′ + h) dθ =

∫
S ho(h′′

o + ho) dθ gives(∫
S
(D2ho + ho)2/3 dθ

)3

≤ 4π2

∫
S

ho(h′′
o + ho) dθ.

This is the affine isoperimetric inequality for K.
If equality holds, then the equality conditions of Theorem 1 imply h is

the support function of an ellipse centered at the origin. Thus ho = h −
a cos θ−b sin θ is the support function of an ellipse centered at (−a,−b). ¤

5. A family of transforms.

Let S be the unit circle in R2 with coordinate θ as above. For each
λ ∈ (0,∞), let

ψλ(θ) =

√
λ2 cos2 θ +

1
λ2

sin2 θ.

Define on S a family of mappings

mλ(θ) =
∫ θ

0

dt

ψ2
λ(t)

.

When λ = 1, this is the identity map. For 0 ≤ θ < π
2 it is easy to verify that

(5.1) mλ(θ) = arctan
(

1
λ2

tan θ

)
.
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For any measurable function u on S, define the transform

(Tλu)(θ) = u(mλ(θ))ψλ(θ).

Lemma 5.1. Let u and v be measurable functions on S for which the inte-
grals below exist. Then

(i) The mappings mλ(·) each leave four points fixed:

mλ(0) = 0, mλ

(π

2

)
=

π

2
, mλ(π) = π, mλ

(
3π

2

)
=

3π

2
.

(ii) The transforms leave the following integrals invariant:

(5.2)
∫

dθ

(Tλu)2
=

∫
dθ

u2
,

(5.3)
∫

Tλu

(Tλv)3
dθ =

∫
u

v3
dθ,

(5.4)
∫
S
{(Tλu)2 − [(Tλu)′]2} dθ =

∫
S
[u2 − (u′)2] dθ,

(5.5)
∫

cos θ

(Tλu)3(θ)
dθ =

1
λ

∫
cos θ

u3(θ)
dθ,

(5.6)
∫

sin θ

(Tλu)3(θ)
dθ = λ

∫
sin θ

u3(θ)
dθ.

Here “
∫
” represents the integral with respect to dθ on any of the intervals

[0, π
2 ], [π

2 , π], [π, 3π
2 ], [3π

2 , 2π], or [0, 2π]. For (5.2), (5.3), (5.5), and (5.6)
u and v can be any measurable functions for which the integrals converge.
In (5.4) u ∈ H1(S).

Remark 5.2. We indicate briefly the geometric origin of these transforma-
tions and the invariance properties of some the integrals in the lemma.
Let K be a convex body in R2 and let Kλ be the image of K under the
linear map (x, y) 7→ (λx, 1

λy). Then the support functions are related by
hKλ

(θ) = (TλhK)(θ). Therefore integrals of functions of the support func-
tion that represent quantities of the body that are invariant under area
preserving affine maps will be invariant under the transformations Tλ. For
example when u is a support function (5.4) corresponds to the invariance
of the area and (5.5) and (5.6) correspond to the invariance of the Santaló
point. The lemma shows these invariance properties extend to a larger class
of functions than support functions.

Proof. (i) From (5.1), one can see that mλ(0) = 0, mλ(π
2 ) = π

2 . Since the
integrand is symmetric about θ = π

2 on [0, π], and is π-periodic, in follows
that π and 3π

2 are also fixed points of mλ.
(ii) We verify invariance for the integrals on the interval [0, π

2 ]. Then by
the results in (i) and the symmetry of ψλ(θ), cos θ, and sin θ, the invariance
of the integrals on the other intervals follows.
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Equations (5.2) and (5.3) are direct consequences from the substitution
θ̃ = mλ(θ).

As C2(S) is dense in H1(S) it is enough to verify (5.4) in the case u ∈
C2(S). After integrating by parts, we only need to show∫

S
Tλu[Tλu + (Tλu)′′] dθ =

∫
S

u(u + u′′) dθ.

We employ the fact that ψλ is a solution of the equation

(5.7) ψ′′
λ + ψλ =

1
ψ3

λ

.

It follows from (5.7) and a straightforward calculation that

Tλu[Tλu + (Tλu)′′] = u(mλ(θ))[u(mλ(θ)) + u′′(mλ(θ))]
1

ψ2
λ(θ)

.

Again using the change of variable θ̃ = mλ(θ), we see (5.4) holds.
To obtain (5.5) and (5.6), we write tan θ = λ2 tan θ̃. It follows that

cos θ

ψλ(θ)
=

1√
λ2 + 1

λ2 tan2 θ
=

1
λ

cos θ̃,
sin θ

ψλ(θ)
=

1√
λ2

tan2 θ
+ 1

λ

= λ sin θ̃

and another application of the substitution θ̃ = mλ(θ) completes the proofs
of (5.5) and (5.6). ¤

Remark 5.3. Let u be a positive continuous function on S, then the integral
of dθ

(Tλu)2
is independent of λ. It is not hard to check that as λ → ∞ the

mass of dθ
(Tλu)2

concentrates about the points π/2 and 3π/2 and when λ → 0
the mass concentrates about 0 and π.

6. Proof of the main inequality.

6.1. Some lemmas.

Lemma 6.1. If {uk} is a bounded sequence in H1(S), then there exists a
subsequence (still denoted by {uk}) and uo ∈ H1(S), such that uk → uo in
the weak topology of H1(S),

(6.1) uk → uo in Cβ(S) for all β <
1
2
.

This implies

(6.2) lim sup
k→∞

∫
S
[u2

k − (u′
k)

2] dθ ≤
∫
S
[u2

o − (u′
o)

2] dθ.

Moreover, if uo(θ0) = 0 at some point θ0, then for δ > 0

(6.3)
∫ θ0+δ

θ0

dθ

u2
o

= ∞ and
∫
S

dθ

u2
k

→ ∞ as k → ∞.
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Lemma 6.2. Assume {uk} is a bounded sequence in H1(S) with uk > 0,
uk → uo ∈ H1(S) in the weak topology,

(6.4)
∫
S

cos θ

u3
k

dθ = 0 =
∫
S

sin θ

u3
k

dθ,

and that uo has at least one zero. Then, viewing the zeros of uo as a subset
of S ⊂ R2,

(6.5) (0, 0) ∈ convex hull of the zeros of uo.

If uo has three or more zeros then

(6.6)
∫
S
[u2

k − (u′
k)

2] dθ < 0 for sufficiently large k.

Lemma 6.3. Suppose the inequality (2.2) holds under the stronger condi-
tions:

i) F is measurable and positive on S and h ∈ H1(S) is positive;
ii) F satisfies the orthogonality conditions (2.1) and h satisfies orthogo-

nality conditions

(6.7)
∫
S

cos θ

h3
dθ = 0 =

∫
S

sin θ

h3
dθ.

Then the same inequality (2.2) holds without the orthogonality condi-
tions (6.7) on h and the strict positivity of F .

Proof of Lemma 6.1. That there is a uo ∈ H1(S) and a subsequence with
uk → uo in the weak topology follows from the weak compactness of the
closed balls in a Hilbert space. Then (6.1) is a direct consequence of the com-
pact Sobolev imbedding of H1(S) into Cβ(S) for any β < 1

2 . To prove (6.2)
use the fact that the norm of a Hilbert space is lower semi-continuous with
respect to weak convergence and thus lim infk→∞

∫
S[u′

k]
2 dθ ≥ ∫

S[u′
o]

2 dθ.
From (6.1) limk→∞

∫
S u2

k dθ =
∫
S u2

o dθ. Together these imply (6.2).
Assume that uo vanishes at θ0. Then by the Sobolev imbedding H1(S) ⊂

C
1
2 (S), or an elementary Hölder inequality argument, uo ∈ C

1
2 (S) and there-

fore |uo(θ)| = |uo(θ) − uo(θ0)| ≤ C1

√|θ − θ0| which implies the divergence
of the integral

∫ θ0+δ
θ0

u−2
o dθ. As uk → uo uniformly this implies the second

part of (6.3) and completes the proof of the Lemma. ¤

Proof of Lemma 6.2. Because the imbedding of H1(S) into Cβ(S) is com-
pact for β ∈ [0, 1/2) the weak convergence uk → uo implies {uk} con-
verges to uo uniformly. By Lemma 6.1 the integral

∫
S u−2

o dθ diverges and
therefore

∫
S u−3

o dθ also diverges. Thus
∫
S u−3

k dθ → ∞ as k → ∞. Let
ck :=

(∫
S u−3

k dθ
)−1. Then cku

−3
k (θ)dθ is a probability measure on S and

the conditions (6.4) imply the center of mass of this measure is (0, 0). But
as k → ∞ the masses of the measures cku

−3
k (θ)dθ concentrate at the zeros

of u0. This implies (6.5).
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If uo has three or more zeros, then the convex hull property (6.5) implies
there are three zeros θ1, θ2, θ3 of uo such that

(6.8) The zeros θ1, θ2, θ3 of uo are not on an arc of length less than π.

We will show this implies

(6.9)
∫
S
[u2

o − (u′
o)

2] dθ < 0.

Which, by (6.2) of Lemma 6.1, implies (6.6).
To see (6.9), we write the integral in three parts:

(6.10)
∫
S
[u2

o−(u′
o)

2] dθ =
{∫ θ2

θ1

+
∫ θ3

θ2

+
∫ θ1

θ3

}
[u2

o−(u′
o)

2] dθ = I1+I2+I3.

From (6.8), we see that lengths of intervals of integration in (6.10) are all
less than or equal to π, and at least two of them are strictly less than
π. But, [2, p. 185], if θi+1 − θi ≤ π, then uo(θi) = uo(θi+1) = 0 implies∫ θi+1

θi
[u2

o − (u′
o)2] dθ < 0 unless θi+1 − θi = π and uo = C sin(θ − θi) on

[θi, θi+1]. This proves (6.9) and completes the proof of the lemma. ¤
Proof of Lemma 6.3. We assume that the inequality (2.2) holds under the
assumptions i) and ii) of Lemma 6.3. We first claim that for each positive
function h ∈ C2(S), there exists an ho(θ) = ao cos θ + bo sin θ + h(θ) that
satisfies the orthogonality conditions (6.7). To see this minimize the function

f(a, b) =
∫
S

1
(a cos θ + b sin θ + h(θ))2

dθ

for any real numbers a and b, such that a cos θ+b sin θ+h(θ) > 0 for all θ. It
is obvious that f(a, b) is bounded from below by zero. Let {hk(θ) = ak cos θ+
bk sin θ + h(θ)} be a minimizing sequence. From hk(t) > 0, one can easily
see that {ak} and {bk} are bounded, and hence there exist subsequences
converging to some ao, bo ∈ R. Then (ao, bo) is a minimizer of f .

Moreover, from Lemma 6.1, we can see that ho(θ) = ao cos θ + bo sin θ +
h(θ) > 0. (Otherwise ho has a zero and (by Lemma 6.1)

∫
S h−2

o dθ = ∞,
contradicting that ho is a minimizer.) Consequently, at (ao, bo), we have
∂f/∂a = 0 = ∂f/∂b. This implies the orthogonality conditions (6.7) on ho.

We now show that if inequality (2.2) holds for ho = ao cos θ+bo sin θ+h(θ),
then it also holds for h. By the orthogonality conditions (2.1) on F .

(6.11)
∫
S

F (θ)ho(θ) dθ =
∫
S

F (θ)h(θ) dθ,

and if h is of class C2 we can use integration by parts and the fact that both
sin θ and cos θ are in the kernel of the differential operator d2/dθ2 +1 to get∫

S
[h2

o − (h′
o)

2] dθ =
∫
S

ho(h′′
o + ho) dθ

=
∫
S

h(h′′ + h) dθ =
∫
S
[h2 − (h′)2] dθ.(6.12)
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This will also hold for h ∈ H1(S) by approximating by C2 functions. So
if (2.2) holds for ho and F , then (6.11) and (6.12) show it holds for h and
F .

To see that inequality (2.2) also holds for non-negative continuous func-
tions F and non-negative h ∈ H1(S), we let

Fε = F + ε and hε = h + ε.

Then obviously, for each ε > 0, both Fε and hε are positive, and Fε satisfies
the orthogonality conditions (2.1). Therefore inequality (2.2) holds for Fε

and hε. Take the limit as ε → 0 to see that see that (2.2) is also holds for F
and h.

Finally the extensions to F non-negative and measurable follow by ap-
proximating F by positive functions satisfying the orthogonality conditions (2.1)
and taking limits. ¤
6.2. Outline of the Proof. Let

G =
{

v : v > 0,

∫
S

1
v3

dθ < ∞,

∫
S

1
v3

cos θ dθ = 0 =
∫

S

1
v3

sin θ dθ

}

and let
G̃ = {u ∈ G : u ∈ H1(S)}.

Define on G̃ × G,

I(u, v) =
{∫S

1
v2 dθ}3{∫S [u2 − (u′)2]dθ}

{∫S
u
v3 dθ}2

.

It is obvious that for any constants t and s, we have

I(tu, sv) = I(u, v).

To prove the theorem, it is equivalent to show that

(6.13) I(u, v) ≤ 4π2 ∀(u, v) ∈ G̃ × G.

and the equality holds if and only if

(6.14) u = k1

√
λ2 cos2 θ +

1
λ2

sin2 θ

and

(6.15) v = k2

√
λ2 cos2 θ +

1
λ2

sin2 θ

with any non-negative constants k1, k2, and λ > 0.

First, we show that there exists a constant C < ∞, such that

I(u, v) ≤ C ∀(u, v) ∈ G̃ × G.

It is done by applying the family of transforms and by using a contradiction
argument.

Then we study a maximizing sequence {(uk, vk)} of the functional I(u, v).
Usually, such a sequence may be unbounded. However thanks to the family
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of transforms, we are able to convert it into a new sequence which converges
to a maximum (uo, vo) in G̃×G. Finally, we use the well-known classification
results on the solutions of the corresponding Euler-Lagrange equations to
arrive at the conclusion of the theorem.

6.3. The Proof. Part I.
In this part, we show that there exists a constant C < ∞, such that

(6.16) I(u, v) ≤ C, ∀(u, v) ∈ G̃ × G.

We argue by contradiction. Suppose in contrary, there exists a sequence
{(ũk, vk)} in G̃ × G, such that I(ũk, vk)→∞, as k→∞.

Let uk =
ũk

‖ũk‖H1

, then

(6.17) ‖uk‖H1 = 1, and I(uk, vk)→∞.

Here and in the rest of the paper, for convenience of writing, we use
{(uk, vk)} to denote the sequence itself or one of its subsequences.

The first part of (6.17) implies that

(6.18) J(uk) =
∫
S
[u2

k − (u′
k)

2] dθ is bounded ,

Therefore from the second part, we must have

(6.19) uk(θ)→0, for some θ,

since otherwise, if {uk} is bounded away from zero, then by the Hölder
inequality

(6.20)
∫
S

1
v2

dθ ≤
(∫

S

u

v3
dθ

)2/3 (∫
S

1
u2

dθ

)1/3

we would arrive at the boundedness of(∫
S

1
v2
k

dθ

)3 (∫
S

uk

v3
k

dθ

)−2

.

This, together with (6.18), contradicts with the second part of (6.17).
Without loss of generality we assume that J(uk) > 0 for all k. By going

to a subsequence we can assume that {uk} has a weak limit uo. We have
shown that uo has at least one zero and therefore by the convex hull property
of Lemma 6.2 the point (0, 0) is in the convex hull of the zeros of uo. This
implies that uo has at least two zeros. If uo has three or more zeros then (6.6)
of Lemma 6.2 implies that J(uk) < 0 which is not the case. Thus uo has
exactly two zeros.

As uo has exactly two zeros, the convex hull property (6.5) implies the
two zeros must be antipodal, say they are at θ = π

2 and 3π
2 . Obviously, at
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these two points, u−2
k → ∞. For each uk, pick a point pk near π/2, such

that

(6.21)
∫ pk

pk−π
2

1
u2

k

dθ =
∫ pk+π

2

pk

1
u2

k

dθ.

Then, pk → π/2. For a number δ > 0 (to be concrete δ = π/4 will work), let

D1
k =

{
θ : pk − π

2
≤ θ ≤ pk − δ

}
, D2

k =
{

θ : pk + δ ≤ θ ≤ pk +
π

2

}

Dk = D1
k ∪ D2

k.

We will apply the family of transforms Tλ introduced in Section 5. We say
that the family of transforms Tλ in Lemma 6.1 are centered at π

2 , and write
Tλ = Tλ, π

2
. Similarly, one can define transforms centered at any point q,

and denote them by Tλ,q.
By Lemma 5.1 and Remark 5.3 for each uk, one can choose a transform

Tk = Tλk,pk
, such that

(6.22)
∫

Bδ(pk)

dθ

(Tkuk)2
=

∫
Dk

dθ

(Tkuk)2
,

where Bδ(pk) = (pk−δ, pk +δ). Let wk = ‖Tkuk‖−1
H1 Tkuk. Then ‖wk‖H1 = 1

and we can apply Lemma 6.1 to the sequence {wk} and find a subsequence,
still denoted by {wk}, and a wo ∈ H1(S) such that wk → wo in the weak
topology of H1 and wk(θ) → wo(θ) in Cβ for all β < 1

2 .

If wo has no zeros, then by (5.2) in Lemma 5.1 and (6.20), I(uk, vk) is
bounded, and we are done.

Therefore, we may assume that wo has at least one zero. By the convex
hull property of Lemma 6.2

(6.23) (0, 0) ∈ convex hull of the zeros of wo.

This implies that wo has at least two zeros and if wo has three or more zeros
then Lemma 6.2 implies J(wk) < 0 for large k, which, by (5.4) of Lemma
5.1, again would contradict with the assumption that J(uk) > 0. Therefore
wo has exactly two zeros and by the convex hull property (6.23) these zeros
are antipodal. Let the zeros be θ0 and θ1 and we can assume that θ0 ∈ [0, π].
Then

∫ π
0 w−2

o dθ = ∞ (by (6.3)), wk → wo uniformly, and pk → π/2 imply

(6.24)
∫ pk+π

2

pk−π
2

dθ

w2
k

→ ∞.

From (6.21), (6.22) and the properties of the transforms, we also have

(6.25)
∫ pk

pk−π
2

dθ

w2
k

=
∫ pk+π

2

pk

dθ

w2
k

,

and

(6.26)
∫

Bδ(pk)

dθ

w2
k

=
∫

Dk

dθ

w2
k

.
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Now (6.24), (6.25), and (6.26) imply that the integrals of w−2
k on all the four

sets
[pk − π

2
, pk], [pk, pk +

π

2
], Bδ(pk), and Dk

approach infinity. Therefore wo has at least one zero on each of the following
sets

(6.27) [0,
π

2
], [

π

2
, π], Bδ(

π

2
), and [0, π] \ Bδ(

π

2
).

From this we see that wo has at least two zeros on the closed upper half circle.
As the two zeros of wo are antipodal they must be 0 and π. But as Bδ(π/2)
also contains a zero this implies that wo has three zeros, a contradiction.

Part II.
In part I, we have shown that

I(u, v) ≤ C < ∞ ∀ (u, v) ∈ G̃ × G.

To obtain the least possible value of the constant C, we consider a maximiz-
ing sequence {(ũk, vk)} with ‖ũk‖ = 1.

Using an entire similar argument as in part I, we can show that there

exists a family of transforms Tk = Tλk,pk
, such that for uk =

Tkũk

‖Tkũk‖ , we

have
uk(θ)→uo(θ) > 0, ∀θ ∈ [0, 2π].

It follows from (6.20) that

(6.28) I(uk, vk) ≤ I(uk, uk).

Thus, (uo, uo) is a maximum of I(u, v); and furthermore, it is in the interior
of G̃ × G̃. Therefore, we have

∂I

∂u

∣∣∣∣
G̃×G̃

(uo, uo) = 0.

Through a straightforward calculation, one can see that a constant multiple
of uo, still denoted by uo, satisfies the following Euler-Lagrange equation

(6.29) u′′
o(θ) + uo(θ) =

1
u3

o

+ a
cos θ

u4
o

+ b
sin θ

u4
o

.

To determine the constants a and b, we multiply both sides of (6.29) by
cos θ and sin θ respectively, then integrate over [0, 2π] to obtain

(6.30) a

∫
S

cos2 θ

u4
o

dθ + b

∫
S

sin θ cos θ

u4
o

dθ = 0,

(6.31) a

∫
S

cos θ sin θ

u4
o

dθ + b

∫
S

sin2 θ

u4
o

dθ = 0.



16 CHEN, HOWARD, LUTWAK, YANG, AND ZHANG

Using the Hölder inequality, one can show that

(6.32)

∣∣∣∣∣
∫
S

cos2 θ
u4

o
dθ

∫
S

sin θ cos θ
u4

o
dθ∫

S
sin θ cos θ

u4
o

dθ
∫
S

sin2 θ
u4

o
dθ

∣∣∣∣∣ > 0.

Therefore the algebraic system (6.30) and (6.31) has only the trivial so-
lution a = b = 0. Consequently, uo satisfies

(6.33) u′′
o + uo =

1
u3

o

.

Now by the well-known classification result for equation (6.33) (see e.g.
[11, p. 120]), we have

uo(θ) =

√
λ2 cos2 θ +

1
λ2

sin2 θ

for some constant λ.
Then, a straight forward calculation leads to

I(uo, uo) = 4π2.

Finally, since in (6.20), the equality holds if and only if v is a constant
multiple of u, we see that if (uo, vo) is a maximum of the functional I(u, v),
then vo must be a constant multiple of uo.

This completes the proof of the theorem.
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[13] L. A. Santaló, Integral geometry and geometric probability, Addison-Wesley Publish-
ing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac,
Encyclopedia of Mathematics and its Applications, Vol. 1. MR 55 #6340
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